
Smoothing out GPS and heart rate monitor data

August 7, 2011

GPS or heart rate data coming from GPS devices and heart rate monitors can be so fluctuating in
time that their analysis may unfortunately be useless. For instance, it is sometimes possible to view data
on a map as illustrated in Fig. 1 and, in this case, if the altitude data are sufficiently regular, the speed
data is so rough that it is even almost impossible to see that going down is faster than going up (by a
factor close to 2 in this case). It would then be interesting to get smoother data in order to facilitate their
analysis.

(a) Altitude (b) Speed

Figure 1: Altitude and speed data recorded during a hike and shown on a map.

In this note, a simple filtering procedure is presented and is then applied to GPS and heart rate data.

1 A simple filtering procedure

1.1 Forward filtering

Let us consider a function u(t) that shows fluctuations at high frequencies that one would like to get
rid of in order to get smoother data. The objective is thus to determine a function y f w(t) that is free of
these high frequency fluctuations. A simple way to achieve this is to look for y f w(t) as a solution of the
following differential equation:

dy f w

dt
=

1
τ

(
u(t)− y f w(t)

)
(1)

where τ is a characteristic time scale called the relaxation time.

1



This differential equation is a simple relaxation equation that tends to make y f w get close to u with
a characteristic time τ: if y f w is larger than u (i.e., y f w(t) > u(t)), then (dy f w/dt) < 0, which makes y f w
decrease to get closer to u and if y f w is smaller than u (i.e., y f w(t) < u(t)), then (dy f w/dt) > 0, which
makes y f w increase to get closer to u.

If the relaxation time τ is large, y f w will get close to u very slowly and, at the limit where τ → ∞,
y f w(t) will be constant and will not “see” the variations of u. If τ is small, y f w will get close to u very
rapidly and, at the limit where τ → 0, y f w(t) will be equal to u(t) and will thus follow all the variations
of u.

The objective is to discretize the differential equation (1). We then assume that the initial function
u(t) is discretized by N values noted un, n ∈ [1; N]. The differential equation (1) can be discretized as
follows:

yn+1
f w − yn

f w

tn+1 − tn =
1
τ

(
un+1 − yn+1

f w

)
(2)

where ψn = ψ(tn) for any function ψ.
The fact that yn+1

f w (and therefore un+1) is considered in the right-hand-side of this equation comes
from stability reasons: if one chooses yn

f w (and therefore un) instead, stability criteria on (tn+1− tn) must

be satisfied, whereas with yn+1
f w , the numerical scheme is always stable, whatever the value of (tn+1− tn).

Since, for the application considered, the time discretization is imposed (by the frequency of acquisition
of the devices), making this choice ensures that yn+1

f w will never diverge.

One can then compute yn+1
f w very easily:

yn+1
f w =

yn
f w + an+1/2 un+1

1 + an+1/2 (3)

where

an+1/2 =
tn+1 − tn

τ

Starting from the initial value
y0

f w = u0
f w

for instance, all the future values of yn+1
f w can be computed using the relation (3).

The solution obtained for the particular case where u(t) is a Heaviside function is shown in Fig. 2.
This example shows that the function y f w(t) “goes” towards u(t) after the discontinuity of this function
with a finite relaxation time (τ = 2 in this example).

-0.5

 0

 0.5

 1

 1.5

 0  10  20  30  40  50  60

u
y

Figure 2: Example of solution of y f w(t) obtained by solving Eq. (3) where u(t) is a Heaviside function;
τ = 2 in this example.

2



This figure also shows an important feature: y(t) is “late” compared to u(t), which makes regular-
ization non-symmetric.

1.2 Backward filtering

Another way of filtering the high frequencies of u(t) is to reverse the time in Eq. (1):

dybw

dt
=

ybw(t)− u(t)
τ

(4)

The discretization of this differential equation reads:

yn+1
bw − yn

bw
tn+1 − tn =

yn
bw − un

τ

yn
bw (and therefor un) is considered in the right-hand-side of this equation because the time is reversed.

This equation is used to express yn
bw as a function of yn+1

bw (because time is reversed):

yn
bw =

yn+1
bw + an+1/2 un

1 + an+1/2 (5)

where

an+1/2 =
tn+1 − tn

τ

“Starting” from (or ending by) the value

yN
bw = uN

for instance, all the past values of yn
bw can be computed using the relation (5).

The solution obtained for the particular case where u(t) is a Heaviside function is shown in Fig. 3.
This figure shows that the solution is not symmetric and is moved backwards compared to the function
u(t).

-0.5

 0

 0.5

 1

 1.5

 0  10  20  30  40  50  60

u
y

Figure 3: Example of solution of ybw(t) obtained by solving Eq. (5) where u(t) is a Heaviside function;
τ = 2 in this example.

1.3 Centered filtering

In order to get a centered regularized function, one can take the average of the forward and backward
solutions y f w(t) and ybw(t) respectively:

yn =
yn

f w + yn
bw

2
, ∀n ∈ [1; N] (6)

3



The corresponding graph of the function y(t) shown in Fig. 4 shows that the function y(t) is indeed
symmetric.

-0.5

 0

 0.5

 1

 1.5

 0  10  20  30  40  50  60

u
y

Figure 4: Example of solution of y(t) obtained by the solution (6) where u(t) is a Heaviside function;
τ = 2 in this example.

In order to see the influence of the relaxation time τ on the regularized function y(t), this function is
plotted for different values of τ in Fig. 5.

-0.5

 0

 0.5

 1

 1.5

 0  10  20  30  40  50  60

u
y - tau=1
y - tau=5

y - tau=10

Figure 5: Example of solutions of y(t) obtained by the solution (6) where u(t) is a Heaviside function for
different values of the relaxation time τ.

1.4 Keeping the start and end values

As visible in Fig. 5 for τ = 10, the start and end values of the filtered data may not be conserved by the
filtering. Sometimes, these values may be important to conserve, for instance to compute the elevation
gain in the case of the altitude. A simple way to conserve the start and end values is to apply this simple
transformation to the function y(t):

yse(t) = y(t) + (us − ys) +
(ue − ye)− (us − ys)

te − ts
(t− ts)

where the subscripts s and e denote the start and end values respectively.

It must be noticed that the same transformation (and approximation) could be used to keep constant
particular values such as those corresponding to tour markers (in MyTourbook for instance).

4



1.5 Mathematical add-ons

1.5.1 Differential equation for y(t)

Adding Eqs (1) and (4), one gets

d
(
y f w + ybw

)
dt

= −
(
y f w − ybw

)
τ

(7)

Subtracting Eqs (1) and (4), one gets

d
(
y f w − ybw

)
dt

=
2 u−

(
y f w + ybw

)
τ

(8)

Differentiating Eq. (7) and using (8), one gets

d2 (y f w + ybw
)

dt2 =

(
y f w + ybw

)
− 2 u

τ2

In other words, the filtered function y(t) is solution of the following second order differential equa-
tion:

d2y
dt2 =

y− u
τ2 (9)

This equation could be solved directly, in particular to impose the boundary conditions on both ends,
but it would require the inversion of a matrix, which would be more complex to code.

1.6 Derivative of the filtered function

It is straightforward to show that the derivative of the filtered function is equal to the filtered derivative.
In other words, if the filtered function of u is denoted u, then one has: du/dt = du/dt.

1.6.1 Filter

The objective is to determine the filter that corresponds to the filtering procedure described previously.
It can be shown that the solution yH(t) in the case where u(t) is a Heaviside function H(t) is

yH(t) =
1
2

[
et/τ (1− H(t))− e−t/τ H(t)

]
+ H(t)

Differentiating this expression, one gets

dyH

dt
=

1
2 τ

[
et/τ (1− H(t)) + e−t/τ H(t)

]
and this function is nothing but the filter whose graph is given in Fig. 6.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

-10 -5  0  5  10

Figure 6: Graph of the filter (τ = 1).

5



2 Application to GPS and heart rate data

2.1 Illustration of the smoothing effect on the vertical speed data

Data coming from outdoor computers can be very fluctuating in time, which can make their analysis very
difficult. A typical case corresponds to the time evolution of vertical speed recorded by a GPS device
during a hike for instance. Indeed, the GPS precision for the altitude is much lower than that for the
longitude and latitude. This lack of precision is such that altitude data exhibit rather large fluctuations
in time. The time variation of the vertical speed, which is nothing but the time variation of the altitude
(vv(t) = dh/dt), is therefore a rough function of time as illustrated in Fig. 7.

Figure 7: Example of the time variation of the vertical speed obtained from raw GPS data.

In order to regularize this function, we start by regularizing the altitude data using the procedure
described in section 1. In the example considered here, this regularization is illustrated in Fig. 8.

Figure 8: Example of the effect of the smoothing of the time variation of the altitude (τ = 30 in this case).

Using these smoother altitude data, the time variation of the vertical speed is shown in Fig. 91.

Figure 9: Example of the time variation of the vertical speed obtained after smoothing out GPS altitude
data.

1It is worth noting that the graph of the vertical speed obtained directly by smoothing out the raw vertical speed is very
close to this graph, which corresponds to the application of the property dy/dt = dy/dt.

6



These data are smoother than the inital ones (see Fig. 7), but they still exhibit high frequency fluctua-
tions. Theoretically, the high frequencies of these fluctuations have the same characteristics as that of the
initial function. Therefore, to get rid of these high frequencies, the smoothing should be similar to that
used to smooth out the initial data, i.e., using the same value of the relaxation time τ. With this (second)
smoothing, one gets the time variation shown in Fig. 10.

Figure 10: Example of the time variation of the vertical speed obtained after smoothing out altitude GPS
data and then smoothing out the vertical speed with the relaxation time τ.

Thanks to these smoothed-out data, new data can be analyzed like the local terrain slope for instance.
Fig. 11 shows that the raw data are almost useless because of their large fluctuations whereas the slope
obtained after smoothing can be analyzed much more easily.

Figure 11: Example of the time variation of the terrain slope.

2.2 Illustration of the smoothing effect on heart rate data

The same smoothing procedure can be applied to heart rate data. The smoothing effect is shown in
Fig. 12.

Figure 12: Example of the smoothing effect (τ = 30) on the time variation of the heart rate.

7



2.3 Effect of the relaxation time on the smoothing

The effect of the value of the relaxation time τ used to smooth out the data is shown in Fig. 13. This
figure shows that (i) the larger τ is the smoother the data are but that (ii) the local extrema are captured
less accurately, which is not a surprise.

(a) Vertical speed

(b) Heart rate

Figure 13: Effect of the value of the relaxation time τ on the smoothing of the time variation of the heart
rate and the vertical speed.

2.4 Effect of an additional smoothing

It has already been mentioned that, despite the application of the filter with a relaxation time τ, high
frequencies may still remain. To get rid of them, one may apply an additional filtering with a smaller
relaxation time. Fig. 14 shows the effect of such an additional filtering on the vertical and horizontal
speeds in the case where the relaxation time used for this additional filtering is τ/4. This figure shows
that in the case where high frequency fluctuations are barely existing (vertical speed in Fig. 14), this
additional filtering has no visible effect whereas it does filter out high frequencies when they exist (hor-
izontal speed in Fig. 14). Therefore, it can be recommended to apply this additional filtering (with τ/4)
systematically after applying the first one (with τ).

8



(a) Vertical speed

(b) Horizontal speed

Figure 14: Effect of an extra-smoothing with τ/4.

3 Code

An coding example in C/C++ of the filtering procedure described previously is presented. The main
parts are emphasized in color: magenta for the filtering, blue for the procedure to compute missing
initial data and cyan for the computation of the speeds and slope.
# include < s t d i o . h>
# include < s t d l i b . h>
# include <math . h>

# def ine SIZE 1528
# def ine pi 3.1415926535897932384626433832795

/////////////////////////////////////////////////
// F i l t e r s the high f r e q u e n c i e s of f i e l d ( time ) //
/////////////////////////////////////////////////

//==========================
// Main f i l t e r i n g funct ion
//==========================
void smoothing1 ( double∗ time , double∗ f i e l d , double∗ f i e l d _ s c , double tau )
{

i n t i ;
double f i e l d _ s f [ SIZE ] , f i e l d _ s b [ SIZE ] ;
double dt ;

// Forward smoothing
//−−−−−−−−−−−−−−−−−−

f i e l d _ s f [ 0 ] = f i e l d [ 0 ] ;
f o r ( i =1 ; i <SIZE ; i ++)

{
dt = ( time [ i ] − time [ i −1]) / tau ;
f i e l d _ s f [ i ] = ( f i e l d _ s f [ i −1] + dt ∗ f i e l d [ i ] ) / ( 1 . + dt ) ;

}
// Backward smoothing
//−−−−−−−−−−−−−−−−−−−

f i e l d _ s b [ SIZE−1] = f i e l d [ SIZE−1];
f o r ( i =2 ; i <SIZE +1; i ++)

{
dt = ( time [ SIZE−i +1] − time [ SIZE−i ] ) / tau ;
f i e l d _ s b [ SIZE−i ] = ( f i e l d _ s b [ SIZE−i +1] + dt ∗ f i e l d [ SIZE−i ] ) / ( 1 . + dt ) ;

}
// Centered smoothing
//−−−−−−−−−−−−−−−−−−−

f o r ( i =0 ; i <SIZE ; i ++)
{

f i e l d _ s c [ i ] = ( f i e l d _ s f [ i ] + f i e l d _ s b [ i ] ) / 2 . ;
}

9



}

//=================================================
// F i l t e r s twice :
// 1 . a f i r s t time with r e l a x a t i o n time tau
// 2 . a second time with r e l a x a t i o n time tau/4
//=================================================
void smoothing ( double∗ time , double∗ f i e l d , double∗ f i e l d _ s c , double tau , i n t keep_start_end )
{

i n t i ;
double f i e l d _ s c 1 [ SIZE ] ;
double D e l t a _ s t a r t , Delta_end ;

// F i r s t smoothing with tau
//−−−−−−−−−−−−−−−−−−−−−−−−−

smoothing1 ( time , f i e l d , f i e l d _ s c 1 , tau ) ;

// Second smoothing with tau/4
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−

smoothing1 ( time , f i e l d _ s c 1 , f i e l d _ s c , tau / 4 ) ;

// Keep s t a r t and end values
//−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ( keep_start_end == 1)
{

D e l t a _ s t a r t = f i e l d [ 0 ] − f i e l d _ s c [ 0 ] ;
Delta_end = f i e l d [ SIZE−1] − f i e l d _ s c [ SIZE−1];
f o r ( i =0 ; i <SIZE ; i ++)

{
f i e l d _ s c [ i ] = f i e l d _ s c [ i ] + D e l t a _ s t a r t + ( Delta_end−D e l t a _ s t a r t ) / ( double ) ( SIZE−1) ∗ ( double ) ( i ) ;

}
}

}

////////////////////////////////////////////////
// Computes the d i s t a n c e between 2 GPS points //
////////////////////////////////////////////////
double dis tance_gps ( double l a t 1 , double l a t 2 , double lon1 , double lon2 )
{

double ear th_radius = 6 3 6 6 0 0 0 . ; // ear th radius in meters
double l a t 1 _ r a d = l a t 1∗pi / 1 8 0 . ;
double l a t 2 _ r a d = l a t 2∗pi / 1 8 0 . ;
double lon1_rad = lon1∗pi / 1 8 0 . ;
double lon2_rad = lon2∗pi / 1 8 0 . ;

re turn ( ear th_radius ∗ 2 . ∗ as in ( s q r t ( ( s i n ( ( la t1_rad−l a t 2 _ r a d ) / 2 . ) ) ∗ ( s i n ( ( la t1_rad−l a t 2 _ r a d ) / 2 . ) ) + cos ( l a t 1 _ r a d ) ∗ cos ( l a t 2 _ r a d ) ∗ ( s i n ( ( lon1_rad−lon2_rad ) / 2 . ) ) ∗ ( s i n ( ( lon1_rad−lon2_rad ) / 2 . ) ) ) ) ) ;
}

main ( )
{

i n t i ;
double time [ SIZE ] ;
double l a t i t u d e [ SIZE ] , longi tude [ SIZE ] ;
double a l t i t u d e [ SIZE ] , a l t i t u d e _ s c [ SIZE ] ;
double h e a r t _ r a t e [ SIZE ] , h e a r t _ r a t e _ s c [ SIZE ] ;
double d i s t a n c e [ SIZE ] , d i s t a n c e _ s c [ SIZE ] ;
double Vh_ini [ SIZE ] , Vh[ SIZE ] , Vh_sc [ SIZE ] ;
double Vv_ini [ SIZE ] , Vv[ SIZE ] , Vv_sc [ SIZE ] ;
double s lope_sc [ SIZE ] ;
double tau = 3 0 . ;

FILE ∗ f i l e ;

// I n i t i a l i z a t i o n
//===============

f o r ( i =0 ; i <SIZE ; i ++)
{

time [ i ] = −1. ;
l a t i t u d e [ i ] = −1. ;
longi tude [ i ] = −1. ;
a l t i t u d e [ i ] = −1. ;
h e a r t _ r a t e [ i ] = −1. ;

}

// Reading raw data in a t e x t f i l e
//================================

f i l e = fopen ( " example . t x t " , " r " ) ;
f o r ( i =0 ; i <SIZE ; i ++)

{
f s c a n f ( f i l e , "% l f \ t%l f \ t%l f \ t%l f \ t%l f \n " , &time [ i ] , &l a t i t u d e [ i ] , &longi tude [ i ] , &a l t i t u d e [ i ] , &h e a r t _ r a t e [ i ] ) ;

}
f c l o s e ( f i l e ) ;

// Modify data so t h a t no value i s i n v a l i d ( i . e . equal −1)
//========================================================
// We look f o r the f i r s t va l id value ( i . e . d i f f e r e n t from −1) and s e t the i n i t i a l value to t h a t f i r s t va l id value
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Lat i tude
/ / . . . . . . . . .

i f ( l a t i t u d e [0]==−1)
{

i =0 ;
do

10



i ++;
while ( l a t i t u d e [ i ]==−1);
l a t i t u d e [ 0 ] = l a t i t u d e [ i ] ;

}
// Longitude
/ / . . . . . . . . . .

i f ( longi tude [0]==−1)
{

i =0 ;
do

i ++;
while ( longi tude [ i ]==−1);
longi tude [ 0 ] = longi tude [ i ] ;

}
// Al t i tude
/ / . . . . . . . . .

i f ( a l t i t u d e [0]==−1)
{

i =0 ;
do

i ++;
while ( a l t i t u d e [ i ]==−1);
a l t i t u d e [ 0 ] = a l t i t u d e [ i ] ;

}
// Heart Rate
/ / . . . . . . . . . . .

i f ( h e a r t _ r a t e [0]==−1)
{

i =0 ;
do

i ++;
while ( h e a r t _ r a t e [ i ]==−1);
h e a r t _ r a t e [0 ] = h e a r t _ r a t e [ i ] ;

}

// I f the value i s i n v a l i d ( i . e . equal −1) , we s e t i t to the previous value ( in time )
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f o r ( i =1 ; i <SIZE ; i ++)
{

i f ( l a t i t u d e [ i ]==−1)
l a t i t u d e [ i ]= l a t i t u d e [ i −1];

i f ( longi tude [ i ]==−1)
longi tude [ i ]= longi tude [ i −1];

i f ( a l t i t u d e [ i ]==−1)
a l t i t u d e [ i ]= a l t i t u d e [ i −1];

i f ( h e a r t _ r a t e [ i ]==−1)
h e a r t _ r a t e [ i ]= h e a r t _ r a t e [ i −1];

}

// Compute the d i s t a n c e from l a t i t u d e and longitude data
//======================================================

d i s t a n c e [ 0 ] = 0 . ;
f o r ( i =1 ; i <SIZE ; i ++)

{
d i s t a n c e [ i ] = d i s t a n c e [ i −1] + dis tance_gps ( l a t i t u d e [ i ] , l a t i t u d e [ i −1] , longi tude [ i ] , longi tude [ i −1 ] ) ;

}

// Compute the h o r i z o n t a l and v e r t i c a l speeds from the raw d i s t a n c e and a l t i t u d e data
//===================================================================================

f o r ( i =0 ; i <SIZE−1; i ++)
{

i f ( time [ i +1] == time [ i ] )
{

i f ( i ==0)
{

Vh_ini [ i ] = 0 . ;
Vv_ini [ i ] = 0 . ;

}
e l s e

{
Vh_ini [ i ] = Vh_ini [ i −1];
Vv_ini [ i ] = Vv_ini [ i −1];

}
}

e l s e
{

Vh_ini [ i ] = ( d i s t a n c e [ i +1] − d i s t a n c e [ i ] ) / ( time [ i +1] − time [ i ] ) ;
Vv_ini [ i ] = ( a l t i t u d e [ i +1] − a l t i t u d e [ i ] ) / ( time [ i +1] − time [ i ] ) ;

}
}

Vh_ini [ SIZE−1] = Vh_ini [ SIZE−2];
Vv_ini [ SIZE−1] = Vv_ini [ SIZE−2];

// Smooth out the time v a r i a t i o n s of the dis tance , the a l t i t u d e and the hear t r a t e
//================================================================================

smoothing ( time , dis tance , d is tance_sc , tau , 0 ) ;
smoothing ( time , a l t i t u d e , a l t i t u d e _ s c , tau , 0 ) ;
smoothing ( time , h e a r t _ r a t e , h e a r t _ r a t e _ s c , tau , 0 ) ;

// Compute the h o r i z o n t a l and v e r t i c a l speeds from the smoothed d i s t a n c e and a l t i t u d e
//===================================================================================

f o r ( i =0 ; i <SIZE−1; i ++)
{

i f ( time [ i +1] == time [ i ] )

11



{
i f ( i ==0)

{
Vh[ i ] = 0 . ;
Vv[ i ] = 0 . ;

}
e l s e

{
Vh[ i ] = Vh[ i −1];
Vv[ i ] = Vv[ i −1];

}
}

e l s e
{

Vh[ i ] = ( d i s t a n c e _ s c [ i +1] − d i s t a n c e _ s c [ i ] ) / ( time [ i +1] − time [ i ] ) ;
Vv[ i ] = ( a l t i t u d e _ s c [ i +1] − a l t i t u d e _ s c [ i ] ) / ( time [ i +1] − time [ i ] ) ;

}
}

Vh[ SIZE−1] = Vh[ SIZE−2];
Vv[ SIZE−1] = Vv[ SIZE−2];

// Smooth out the time v a r i a t i o n s of the h o r i z o n t a l and v e r t i c a l speeds
//=====================================================================

smoothing ( time , Vh, Vh_sc , tau , 0 ) ;
smoothing ( time , Vv , Vv_sc , tau , 0 ) ;

// Compute the t e r r a i n slope
//==========================

f o r ( i =0 ; i <SIZE ; i ++)
{

s lope_sc [ i ] = Vv_sc [ i ] / Vh_sc [ i ] ∗1 0 0 . ;
}

f i l e = fopen ( " smooth_simple_ini . t x t " , "w" ) ;
f o r ( i =0 ; i <SIZE ; i ++)

{
f p r i n t f ( f i l e , "%g\ t%g\ t%g\ t%g\ t%g\ t%g\n " , time [ i ] , d i s t a n c e [ i ] , a l t i t u d e [ i ] , Vh_ini [ i ] , Vv_ini [ i ] , h e a r t _ r a t e [ i ] ) ;

}
f c l o s e ( f i l e ) ;

f i l e = fopen ( " smooth_simple_sc . t x t " , "w" ) ;
f o r ( i =0 ; i <SIZE ; i ++)

{
f p r i n t f ( f i l e , "%g\ t%g\ t%g\ t%g\ t%g\ t%g\ t%g\n " , time [ i ] , d i s t a n c e _ s c [ i ] , a l t i t u d e _ s c [ i ] , Vh_sc [ i ] , Vv_sc [ i ] , s lope_sc [ i ] , h e a r t _ r a t e _ s c [ i ] ) ;

}
f c l o s e ( f i l e ) ;

}

12


